

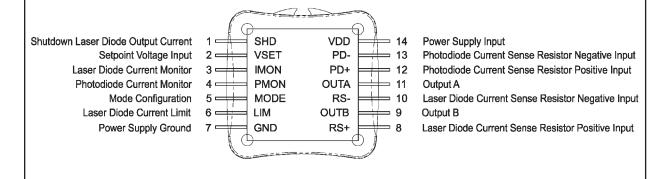
WLD3343 HB

General Purpose Driver for Laser Diodes Warning: This is a Low Voltage Device

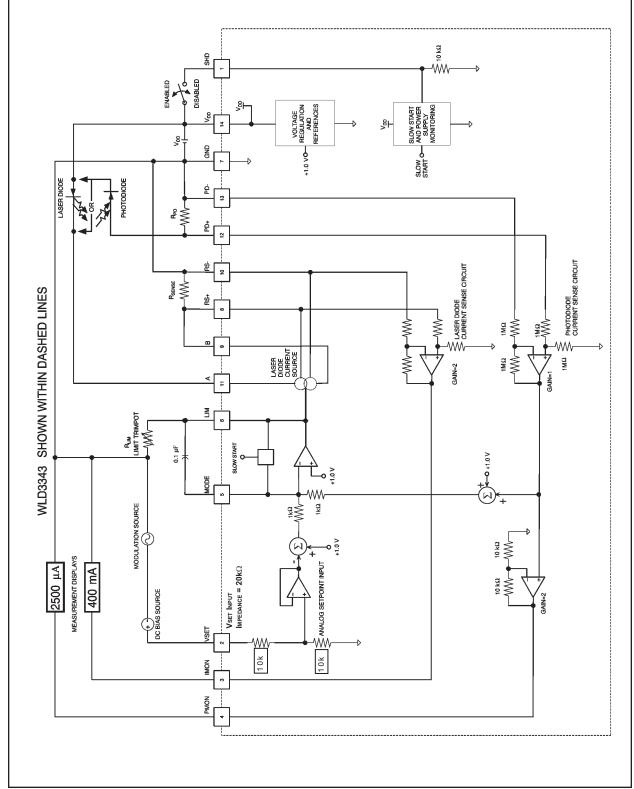
GENERAL DESCRIPTION:

The WLD3343 is an easy-to-use analog circuit for space contstrained laser diode applications. The WLD3343 maintains precision laser diode current (constant current mode) or stable photodiode current (constant power mode) regulation using electronics that are compatible with any laser diode type. Safely supply up to 2.2 Amps of current to your laser diode. The HB version of WLD 3343 offers low voltage operation for use with a **Lithium Ion Battery** or other low voltage power supplies.

Note: Contact factory for higher currents using Master/Slave configurations.


FEATURES:

- Low Cost
- Slow Start Laser Diode Protection
- Drive Up to 2.2 Amps Output Current
- Constant Current or Power Operation
- · Compatible With Any Laser Diode Type
- Small Package Size (1.30" X 1.26" X 0.313")
- Voltage Controlled Setpoint
- Adjustable Current Limit
- · Adjustable Current Range
- · 2 MHz Constant Current Bandwidth
- Over Temperature Shutdown


Figure 1 Top View Pin Layout and Descriptions

TOP VIEW

BLOCK DIAGRAM

External Connections For Type A/B Laser Diodes Operated in Constant Power Mode

PAGE 3

ELECTRICAL AND OPERATING SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS RATING	SYMBOL	VALUE	UNIT			
Supply Voltage (Voltage on Pin 14)	V _{DD}	+3.3 to +6	Volts D	C		
Output Current (See SOA Chart)	I _{LD}	2.2	Amper	es		
Power Dissipation, T _{AMBIENT} = +25°C	P _{MAX}	9	Watts			
Operating Temperature, case [1]	T _{OPR}	- 40 to + 85	°C			
Storage Temperature	T _{STG}	- 65 to +150	°C			
Weight	WLD3343	0.576	oz			
PARAMETER	TEST CONDITION	ONS	MIN	TYP	MAX	UNITS

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CONSTANT CURRENT CONTROL					
Short Term Stability, 1 hour	T _{AMBIENT} = 25°C		25	50	ppm
Long Term Stability, 24 hours	T _{AMBIENT} = 25°C		50	75	ppm
CONSTANT POWER CONTROL					
Short Term Stability, 1 hour	T _{AMBIENT} = 25°C	0.005		0.01	%
Long Term Stability, 24 hours	T _{AMBIENT} = 25°C	0.02		0.05	%
OUTPUT					
Current, peak, see SOA chart		1.8	2.0	2.2	Amps
Compliance Voltage, Laser Diode Load	Full Temp. Range, I _{LD} = 100 mA, 5V	3.6			Volts
Compliance Voltage, Laser Diode Load	Full Temp. Range, I _{LD} = 1 Amp, 5V	3.5			Volts
Compliance Voltage, Laser Diode Load	Full Temp. Range, I _{LD} = 2.0 Amps, 5V	3.0			Volts
Compliance Voltage, Laser Diode Load	Full Temp. Range, I _{LD} = 100 mA,12V	10.6			Volts
Compliance Voltage, Laser Diode Load	Full Temp. Range, I _{LD} = 1 Amp,12V	10.4			Volts
Compliance Voltage, Laser Diode Load	Full Temp. Range, I _{LD} = 2.0 Amp,12V	10.1			Volts
Rise Time	I _{LD} = 2 Amps		160		nsec
Fall Time	I _{LD} = 2 Amps		320		nsec
Bandwidth	Constant Current, Sine Wave		2.0		MHz
Bandwidth	Constant Power (Depends on PD BW)				Seconds
Slow Start - Delay			0.24		Seconds
Slow Start - Ramp			.01		Seconds
Leakage Current [2]			.5		%
POWER SUPPLY					
Voltage, V _{DD}		3.3		6	Volts
Current, V _{DD} supply, quiescent		5	10	15	mA

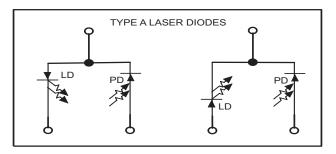
Notes:

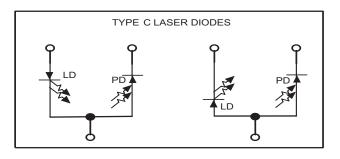
- [1]. With Revision D of the WLD3343, an internal thermostat has been added to activate Shutdown (SHD) when the internal temperature exceeds 105°C. The output will be re-enabled after a 250 to 300 msec slow-start once the internal temperature drops below 95°C.
- [2]. Leakage current specification is based on full current set by Rsense. See page 8 for information on setting the current range. Because of the relatively high leakage current of this device, the WLD is not recommended for use with VCELS

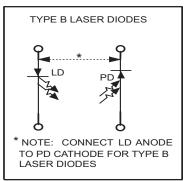
PAGE 4 ELECTRICAL AND OPERATING SPECIFICATIONS - Continued INPUT Offset Voltage, initial, Imon 1 5 mV Pin 2, $T_{AMBIENT} = 25^{\circ}C$, $V_{CM} = 0V$ Bias Current (based on input Res of op amp) Pin 2, $T_{AMBIENT} = 25$ °C, $V_{CM} = 0V$ 50 nΑ 20 0 Common Mode Range Pin 2, Full Temp. Range V_{DD} ٧ Full Temperature Range 60 85 dΒ Common Mode Rejection, Set point Full Temperature Range Power Supply Rejection 60 80 dB **THERMAL** 28 30 33 °C/W Heatspreader Temperature Rise $T_{AMBIENT} = 25^{\circ}C$ With WHS302 Heat sink, WTW002 °C/W Heatspreader Temperature Rise 18 21.5 25 Thermal Washer Heatspreader Temperature Rise With WHS302 Heat sink, WTW002 3.1 3.4 3.9 °C/W Thermal Washer and 3.5 CFM fan Solder temp @260°C 10 Sec Pin Solderability

PIN DESCRIPTIONS

Pin	Pin#	Name	Function
SHD	1	Shutdown Laser Diode	Float or connect a zero Volt signal to Pin 1 (SHD) to ENABLE the
	'	Output Current	output current to the laser diode.
			Connect a +3 Volt or greater signal to Pin 1 (SHD) to DISABLE
			the output current to the laser diode. Do Not Exceed Vdd!
VSET	2	Setpoint Voltage Input or	Connect a voltage source between Pin 2 (VSET) and Pin 7
		Modulation Input	(GND) to control either the laser diode current in constant current
			mode or laser diode power in constant power mode. Range is
			0-2.0 volt full scale. Input impedance is 20K. The offset voltage
			is 0.5V when open(applies to Revision D forward).
IMON	3	Laser Diode Current Monitor	Monitor the laser diode forward current using Pin 3 (IMON). The
			Laser Diode Current Monitor produces a voltage proportional to
			the current flowing through the laser diode.
PMON	4	Photodiode Current Monitor	Monitor the laser diode power using Pin 4 (PMON). The
			Photodiode Current Monitor produces a voltage proportional to
14005			the current produced by the laser diode monitor photodiode.
MODE	5	Mode Configuration	CONSTANT CURRENT OPERATION:
			A 1kΩ resistor between Pin 5 (MODE) and Pin 6 (LIM)
			configures the WLD3343 to regulate the laser diode's forward current.
			CONSTANT POWER OPERATION:
			A 0.1 µF capacitor between Pin 5 (MODE) and Pin 6 (LIM)
			configures the WLD3343 to regulate the laser diode's output
			power.
LIM	6	Laser Diode Current Limit	A resistor connected between Pin 6 (LIM) and Pin 7 (GND) limits
	Ŭ		the maximum amount of forward current through the laser diode
GND	7	Power Supply Ground	Connect the VDD power supply ground connection to Pin 7
		,	(GND).
RS+	8	Laser Diode Current Sense	Connect Pin 8 (RS+) directly to the positive side of the laser
		Resistor Positive Input	diode current sense resistor. The resistance value of R _{SENSE}
			determines the range of forward current through the laser diode.
OUTB	9	Output B	Connect Pin 9 (OUTB) to the positive side of R _{SENSE} .
RS-	10	Laser Diode Current Sense	Connect Pin 10 (RS-) directly to the negative side of the laser
		Resistor Negative Input	diode current sense resistor. The resistance value of R _{SENSE}
			determines the range of forward current through the laser diode.


PAGE 6


PIN DESCRIPTIONS


Output A

Pin	Pin#	Name	Function
OUTA	11	Output A	TYPE A/B LASER DIODES:
			Connect Pin 11 (OUTA) to the cathode connection of the laser
			diode for type A/B laser diode operation.
			TYPE C LASER DIODES:
			Connect Pin 11 (OUTA) to Pin 14 (VDD) for type C laser diode
			operation.
PD+	12	Photodiode Current Sense	TYPE A/B LASER DIODE OPERATION:
		Resistor Positive Input	CC: Connect Pin 12 (PD+) and Pin 13 (PD-) to Pin 7 (GND).
			CP: Connect Pin 12 (PD+) to the anode of the photodiode.
			TYPE C LASER DIODE OPERATION:
			CC: Connect Pin 12 (PD+) and Pin 13 (PD-) to Pin 7 (GND).
			CP: Connect Pin 12 (PD+) to Pin 14 (VDD).
PD-	13	Photodiode Current Sense	TYPE A/B LASER DIODE OPERATION:
		Resistor Negative Input	CC: Connect Pin 12 (PD+) and Pin 13 (PD-) to Pin 7 (GND).
			CP: Connect Pin 13 (PD-) to Pin 7 (GND).
			TYPE C LASER DIODE OPERATION:
			CC: Connect Pin 12 (PD+) and Pin 13 (PD-) to Pin 7 (GND).
			CP: Connect Pin 13 (PD-) to the cathode of the photodiode.
VDD	14	Power Supply Input	Power supply input for the WLD3343's internal control electronics.
			Supply range input for this pin is +3.3 to +6 Volts DC.

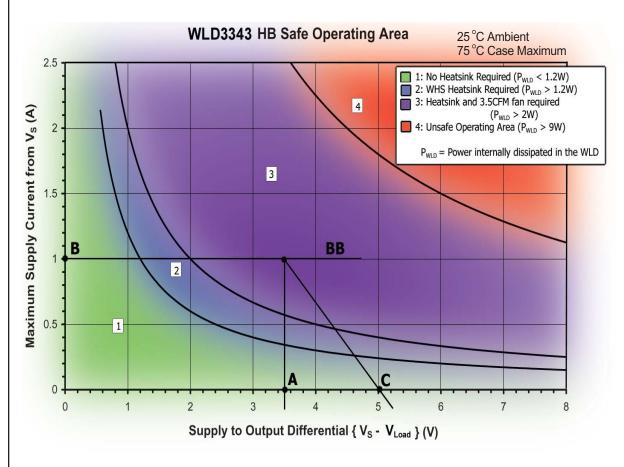
LASER DIODE PACKAGE STYLES

TYPICAL PERFORMANCE GRAPHS

Caution:

Do not exceed the Safe Operating Area (SOA). Exceeding the SOA voids the warranty.

To determine if the operating parameters fall within the SOA of the device, the maximum voltage drop across the controller and the maximum current must be plotted on the SOA curves.


These values are used for the example SOA determination:

Vs= 5 volts
Vload = 1.5 volts
ILoad = 1 amp
These values are determined from the specifications of the Laser Diode.

Follow these steps:

- 1. Determine the maximum voltage drop across the controller ,Vs-Vload, and mark on the X axis. (5volts 1.5 volts = 3.5 volts, Point A)
- 2. Determine the maximum current, ILoad, through the controller and mark on the Y axis: (1 amp, Point B)
- 3. Draw a horizontal line through Point B across the chart. (Line BB)
- 4. Draw a vertical line from Point A to the maximum current line indicated by Line BB.
- 5. Mark Vs on the X axis. (Point C)
- 6. Draw the Load Line from where the vertical line from point A intersects Line BB down to Point C.

Refer to the chart shown below and note that the Load Line is in the Unsafe Operating Areas for use with no heatsink (1) or the heatsink alone (2), but is outside of the Unsafe Operating Area for use with heatsink and Fan (3).

OPERATION

1. SELECTING THE LASER DIODE OUTPUT CURRENT RANGE

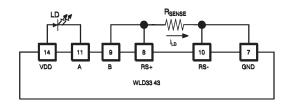
The output current range of the WLD3343 depends on the selection of resistor R_{SENSE} placed between Pin 8 (RS+) and Pin 10 (RS-) as shown in Figure 1.

Equation 1 calculates R_{SENSE} for a maximum desired laser diode current, I_{LDMAX}. Refer to Table 1 to select R_{SENSE} for common laser diode current ranges.

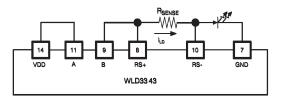
Table 1 Laser Diode Current Sense Resistor R_{SENSE} vs Maximum Laser Diode Current I_{LDMAX}

	I .	I
Maximum	Constant Power	Constant Current
Output	Current	Current
Current	Sense	Sense
I _{LDMAX}	Resistor,	Resistor,
	R _{SENSE}	R _{SENSE}
50 mA	25.00 Ω	20.00 Ω
125 mA	10.00 Ω	8.00 Ω
250 mA	5.00 Ω	4.00 Ω
500 mA	2.50 Ω	2.00 Ω
1.25 Amps	1.00 Ω	0.80 Ω
2.2 Amps	0.57 Ω	0.45 Ω

2. HELPFUL HINTS FOR CHOOSING R_{SENSE}


- •Never use a carbon film resistor for R_{SENSE}.
- •Avoid resistors with high parasitic inductance.
- •Select a resistor with a low temperature coefficient (1% 100ppm/°C).
- •Place R_{SENSE} as close to Pins 8 (RS+) and 10 (RS-) on the WLD3343 as possible to avoid parasitic resistance effects from the PCB layout.
- •Use Equation 2 for determining the power rating of R_{SENSE}.

Note: Wavelength Electronics recommends a conservative power rating of 2 times normal maximum for R_{SENSE}. Equation 2 incorporates this recommendation.


Figure 1

Connecting R_{SENSE}

TYPE A/B LASER DIODES

TYPE C LASER DIODES

Equation 1

Calculating R_{SENSE}

Constant Power Mode

$$R_{SENSE} = \frac{1.25}{I_{LDMAX}}$$

Constant Current Mode

$$R_{SENSE} = \frac{1.00}{I_{IDMAX}}$$

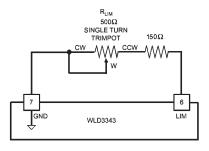
Equation 2

Calculating The Power Rating For R_{SENSE}

RATING = 2 * I LDMAX * RSENSE

OPERATION 3. CONFIGURING THE LASER DIODE CURRENT LIMIT

The WLD3343 allows a customized current range for a specific application. An optimized set point resolution while minimizing output noise are the benefits of configuring a customized current range. Table 2 lists the scaling factors for different current limiting (R_{LIM}).


To select an appropriate resistance value for the limit resistor (R_{LIM}), the laser diode type and mode of operation, divide the maximum laser diode current (determined in Section 1) into the desired maximum operating current for the laser diode. This result is the Normalized Maximum Output Current. Choose the resistance value of the current limit set resistor (R_{LIM}) shown next to the calculated Normalized Maximum Output Current.

Use Equation 3 to calculate a precise value for R_{LIM} .

Setting Current Limits Using Trimpots

Connect a 500 Ω trimpot and a 150 Ω resistor as shown in Figure 2 to make the maximum current limit adjustable.

Figure 2
Adjustable Current Limits

Example 1

Choosing R_{LIM} for a Type A/B Laser Diode with a 1.5 AMP Maximum Forward Current in Constant Current Mode.

Configure the WLD3343 so that I_{LDMAX} is 2.2 Amps by selecting RSENSE equal to 0.45 Ω . The Normalized Maximum Output Current then equals:

$$=\frac{1.5 \text{ Amps}}{2.2 \text{ Amps}} = 0.68$$

A Normalized Output Current of 0.68 (68%) corresponds to a current limit set resistor R_{LIM} of 405 Ω .

Equation 3

Calculating R_{LIM}

$$R_{LIM} = \frac{\alpha \left[\frac{I_{LDLIM} R_{SENSE} + 1}{\beta} \right]}{1 - \left[\frac{I_{LDLIM} R_{SENSE} + 1}{\beta} \right]}$$

Laser Diode Type / Mode	α	β
Type A/B - CC	282	2.85
Type A/B - CP	350	3.35
Type C - CC	290	2.93
Type C - CP	385	3.57

Table 2
Current Limit Set Resistor R_{LIM} vs
Normalized Maximum Output Current

Normalized	Type A/B Laser	Type A/B Laser	Type C Laser Diode	Type C Laser Diode
Maximum	Diode Constant	Diode Constant	Constant Current	Constant Power
Output	Current Limit Set	Power Limit Set	Limit Set Resistor	Limit Set Resistor
Current	Resistor R _{LIM} (Ω)	Resistor R _{LIM} (Ω)	$R_{LIM}(\Omega)$	R _{LIM} (Ω)
0.00 (0%)	152	149	150	150
0.04 (4%)	162	160	160	160
0.08 (8%)	172	171	169	171
0.12 (12%)	183	183	179	183
0.16 (16%)	194	195	190	195
0.20 (20%)	205	208	201	207
0.24 (24%)	217	222	213	220
0.28 (28%)	230	236	225	234
0.32 (32%)	243	251	238	248
0.36 (36%)	257	267	251	263
0.40 (40%)	272	284	265	279
0.44 (44%)	288	301	280	295
0.48 (48%)	305	320	296	313
0.52 (52%)	322	340	313	331
0.56 (56%)	341	361	330	350
0.60 (60%)	361	383	349	370
0.64 (64%)	382	406	369	392
0.68 (68%)	405	432	390	414
0.72 (72%)	429	459	412	438
0.76 (76%)	455	488	436	463
0.80 (80%)	483	519	462	490
0.84 (84%)	514	552	490	519
0.88 (88%)	547	588	519	550
0.92 (92%)	582	627	551	583
0.96 (96%)	621	670	586	618
1.00 (100%)	664	716	624	656

OPERATION PAGE 11

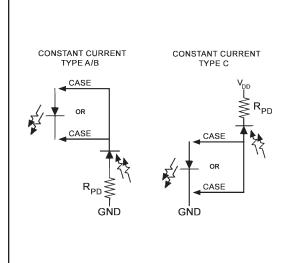
4. SELECTING THE MONITOR PHOTODIODE CURRENT RANGE

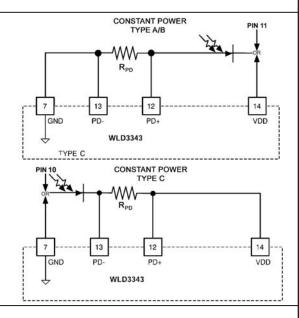
The monitor photodiode current range determines the selection of the resistor R_{PD} . Equation 4 calculates R_{PD} for a maximum desired photodiode current, Ipdmax. Refer the Table 3 to select R_{PD} for common photodiode current ranges.

In constant power mode, the photodiode is used to control laser output and Rpd is connected across Pin 12 (PD+) and Pin 13 (PD-). In constant current mode, the photodiode is excluded from the control circuit and Pin 12 (PD+) and Pin 13 (PD-) are shorted together. The photodiode current can still be monitored in constant current mode with R_{PD}. Refer to Figure 3 for photodiode resistor connections.

Equation 4

Calculating R_{PD}


$$R_{PD} = \frac{1}{I_{PDMAX}}$$


Table 3

Monitor Photodiode Sense Resistor R_{PD} vs Maximum Photodiode Current I_{PDMAX}

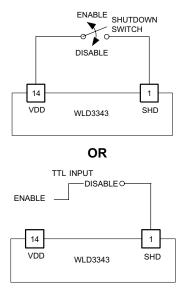
Maximum Photodiode Current, IPDMAX	Monitor Photodiode Current Sense Resistor, R _{PD}
20μΑ	50kΩ
200μΑ	5kΩ
2mA	500Ω
20mA	50Ω

Figure 3
Connecting R_{PD}

5. HELPFUL HINTS FOR CHOOSING R_{PD}

- •Never use a carbon film resistor for R_{PD}.
- •Select a resistor with a low temperature coefficient (ppm/°C).
- •Place R_{PD} as close to Pins 12 (PD+) and 13 (PD-) on the WLD3343 as possible to avoid parasitic resistance effects from the PCB layout when in constant power mode.

OPERATION


6.DISABLING THE OUTPUT CURRENT

The output current can be enabled and disabled as shown in Figure 4 using a SPST (Single-Pole Single-Throw) switch or a TTL signal.

NOTE:

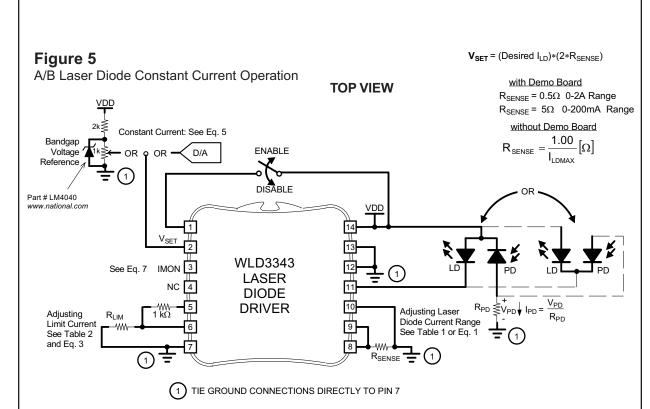
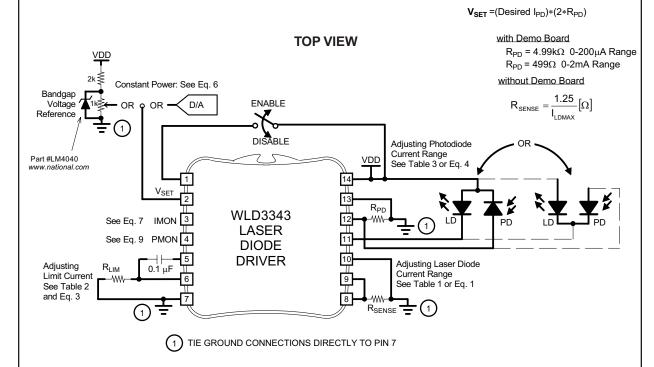

Do not insert or remove the laser diode from the WLD3343 circuit with power applied to the unit.

Figure 4
Disabling Output Current


PAGE 13

7. OPERATING an A/B type laser diode

Free Design Calculator: <u>www.teamwavelength.com/tools/tools.asp</u>

8. OPERATING a C type laser diode

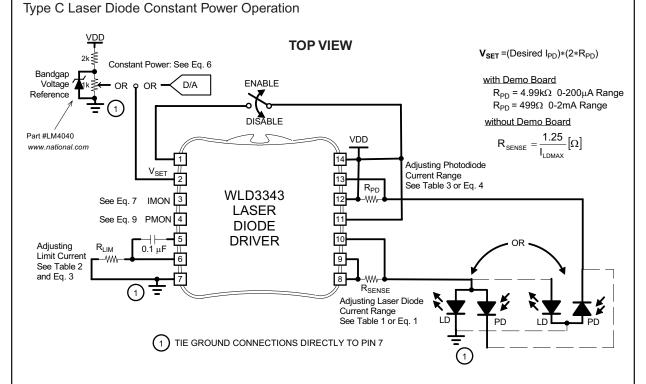

PAGE 14

Figure 7Type C Laser Diode Constant Current Operation

Free Design Calculator: <u>www.teamwavelength.com/tools/tools.asp</u>

Free Design Calculator: <u>www.teamwavelength.com/tools/tools.asp</u>

OPERATION

9. CONTROLLING THE LASER DIODE FORWARD CURRENT IN CONSTANT CURRENT MODE

Equation 5 calculates the laser diode forward current produced by applying a voltage at Pin 2 (VSET) in constant current mode.

10. CONTROLLING THE MONITOR PHOTODIODE CURRENT IN CONSTANT POWER MODE

Equation 6 calculates the monitor photodiode current produced by applying a voltage at Pin 2 (V_{SET}) in constant power mode.

11.TYPICAL OPERATION OF THE VOLTAGE CONTROL INPUT

Figure 9 illustrates a typical configuration of the WLD3343 voltage input.

CAUTION: CONNECTING VOLTAGES OUTSIDE THE RANGE OF VDD TO GND TO THE VOLTAGE SETPOINT INPUT ON PIN 2 (VSET) CAN RESULT IN DAMAGE TO THE WLD3343 OR YOUR LASER DIODE.

12. MEASURING LASER DIODE FORWARD CURRENT USING THE CURRENT MONITOR OUTPUT

Equation 7 provides a transfer function for converting the voltage output of Pin 3 (IMON) to the amount of forward current flowing through the laser diode.

13.MEASURING MONITOR PHOTODIODE CURRENT IN CONSTANT CURRENT MODE

Equation 8 provides a transfer function for converting the voltage across R_{PD} to the amount of current flowing through the monitor photodiode in constant current mode.

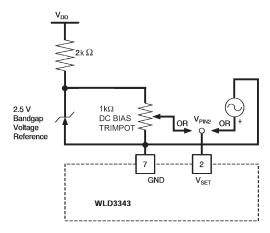
14. MEASURING MONITOR PHOTODIODE CURRENT IN CONSTANT POWER MODE USING THE POWER MONITOR OUTPUT

Equation 9 provides a transfer function for converting the voltage output of Pin 4 (PMON) to the amount of current flowing through the monitor photodiode in constant power mode.

Equation 5

Constant Current Control

$$I_{LD} = \frac{V_{PIN2}}{2*R_{SENSE}} [AMPS]$$


Equation 6

Constant Power Control

$$I_{PD} = \frac{V_{PIN2}}{2^*R_{PD}} [AMPS]$$

Figure 9

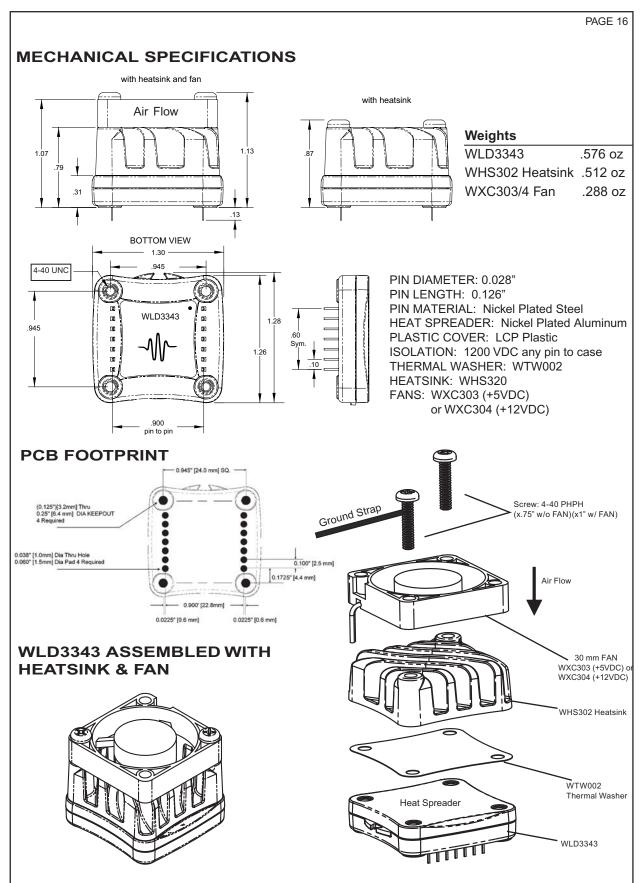
Configuring The Voltage Input

Equation 7

Laser Diode Forward Current Measurement

$$I_{LD} = \frac{V_{PIN3}}{2*R_{SENSE}} [AMPS]$$

Equation 8


Monitor Photodiode Current Measurement in Constant Current Mode

$$I_{PD} = \frac{V_{R_{PD}}}{R_{PD}} \quad [AMPS]$$

Equation 9

Monitor Photodiode Current Measurement in Constant Power Mode

$$I_{PD} = \frac{V_{PIN4}}{2^*R_{PD}} \quad [AMPS]$$

Noise Reduction: Grounding the heatspreader(metal plate on top of the driver) will reduce noise. In the case where a heatsink or fan is attached, connect the strap on top of the unit with the connecting screws.

CERTIFICATION AND WARRANTY

CERTIFICATION:

Wavelength Electronics (WEI) certifies that this product met it's published specifications at the time of shipment. Wavelength further certifies that its calibration measurements are traceable to the United States National Institute of Standard and Technology, to the extent allowed by that organization's calibration facilities, and to the calibration facilities of other International Standards Organization members.

WARRANTY:

This Wavelength product is warranted against defects in materials and workmanship for a period of 90 days from date of shipment. During the warranty period, Wavelength will, at its option either repair or replace products which prove to be defective.

WARRANTY SERVICE:

For warranty service or repair, this product must be returned to the factory. For products returned to Wavelength for warranty service, the Buyer shall prepay shipping charges to Wavelength and Wavelength shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to Wavelength from another country.

LIMITATIONS OF WARRANTY:

The warranty shall not apply to defects resulting from improper use or misuse of the instrument or operation outside published specifications.

No other warranty is expressed or implied. Wavelength specifically disclaims the implied warranties of merchantiability and fitness for a particular purpose.

EXCLUSIVE REMEDIES:

The remedies provided herein are the Buyer's sole and exclusive remedies. Wavelength shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

NOTICE:

The information contained in this document is subject to change without notice. Wavelength will not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Wavelength.

SAFETY:

There are no user serviceable parts inside this product. Return the product to Wavelength Electronics for service and repair to assure that safety features are maintained.

LIFE SUPPORT POLICY:

As a general policy, Wavelength Electronics, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the Wavelength Electronics, Inc. product can be reasonably expected to cause failure of the life support device or to significantly affect its safety or effectiveness. Wavelength Electronics, Inc. will not knowingly sell its products for use in such applications unless it receives written assurances satisfactory to Wavelength Electronics, Inc. that the risks of injury or damage have been minimized, the customer assumes all such risks, and there is no product liability for Wavelength Electronics, Inc. Examples or devices considered to be life support devices are neonatal oxygen analyzers, nerve stimulators (for any use), auto transfusion devices, blood pumps, defibrillators, arrhythmia detectors and alarms, pacemakers, hemodialysis systems, peritoneal dialysis systems, ventilators of all types, and infusion pumps as well as other devices designated as "critical" by the FDA. The above are representative examples only and are not intended to be conclusive or exclusive of any other life support device.

WAVELENGTH ELECTRONICS, INC. 51 Evergreen Drive Bozeman, Montana, 59715

phone: (406) 587-4910 Sales and Technical Support

(406) 587-4183 Accounting

fax: (406) 587-4911

e-mail: sales@teamwavelength.com web: www.teamwavelength.com